
Journal of Statistical Physics, Vol. 101, Nos. 1�2, 2000

Asymptotic Behaviour for Critical Slowing-Down
Random Walks1

Yves Elskens2

Received October 21, 1999; final March 28, 2000

The jump processes W(t) on [0, �[ with transitions w � :w at rate bw ;

(0�:<1, b>0, ;>0) are considered. Their moments are shown to decay not
faster than algebraically for t � �, and an equilibrium probability density is
found for a rescaled process U=(t+})&; W. A corresponding birth process is
discussed.
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1. INTRODUCTION

Random walks with absorbing states occur quite commonly. Here we focus
on the asymptotic behaviour of random walks suffering critical slowing
down on approaching such a state.(1�3, 6)

Consider a markovian random walk W on [0, +�[ with continuous
time t. The value of W is multiplied at random times by a given factor
0�:<1, and successive jumps occur independently, with a waiting time
between them distributed according to an exponential law with parameter
bW;, where b>0, ;>0. By introducing a new time t$=bt, a new variable
W$=W; and a new constant :$=: ;, one reduces this model to the case
;=1, b=1 with no loss of generality. A characteristic parameter related to
: is the e-folding number of jumps

&=&1� ln(:) (1)
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such that, after c& jumps, W has been reduced by a factor :c&=e&c.
Denoting by f (w, t) the probability distribution function of W, the

evolution equation for f reads

�t f (w, t)=&wf (w, t)+:&2wf (:&1w, t) for :>0 (2)

�t f (w, t)=&wf (w, t)+$(w) x1(t) for :=0 (3)

If they exist, the moments xk(t)=(Wk) =��
0 wkf (w, t) dw satisfy the

hierarchy

x* k=&(1&:k) xk+1 (4)

with the dot denoting derivation with respect to time t. We assume that
P(W(0)>0)=1.

As this random walk can move only towards the origin, we are inter-
ested in its asymptotic approach to 0. Equations (2)�(4) indicate that W
and t&1 are dimensionally homogeneous, and no absolute time scale is
available in these equations.

Physically speaking, this random walk appears naturally in the kinetic
theory of inelastic systems. Up to dimensional constants, if W is the
modulus of the velocity of a particle suffering inelastic collisions (with
restitution factor :) with fixed colliders, our process describes the particle's
velocity slowing down. For an assembly of such particles, the resulting pro-
cess is thus inelastic cooling. However, further physical analysis of actual
granular systems leads to a more complex process that our simple random
walk.(2, 3)

2. EVOLUTION FOR W

The linear hierarchy (4) has a straightforward formal solution(1, 6)

xk(t)= :
�

l=0

(&t) l

l !
[k+l&1]!

[k&1]!
xk+l (0) (5)

with the q-factorial notation [k]!=>k
n=1 ((1&:n)�(1&:)). Note that

lim: � 1[k]!=k ! and that 0<limk � �(1&:)k [k]!<1 for 0<:<1.
If xk(0)<Mk for some M>0 uniformly with respect to k�0, then

(5) implies that all moments xk(t) are entire functions of t, bounded by
Mke(1&:) M |t|. Also, if 0� f (w, 0)<c exp(&c$w#) \w # ]0, �[ for some
c>0, c$>0, #>1, moments xk (k # N) are entire functions of time. Conver-
sely, hierarchy (4) is ill-defined if some initial moments are infinite, though
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(2) and (3) are well-defined in this case too. These bounds are useful to dis-
cuss analytic properties of (5), but they are poor for positive times, as
0<xk(t)<xk(0) obviously for t>0.

Consider now the evolution equation (2). By linearity and scale
invariance, its general solution reads

f (w, t)=|
�

0
f (v, 0) Q \w

v
, vt+ dv

v
(6)

where Q is the solution of (2) for Dirac initial data Q(w, 0)=$(w&1).
For :=0, Q(w, t)=e&t$(w&1)+(1&e&t) $(w), so that for w>0,

f (w, t)=e&wtf (w, 0). The moments follow readily, xk(t)=k ! t&k&1f (0, 0)
+o(t&k&1), and the surviving fraction of the initial population
P(W(t)>0)=t&1f (0, 0)+o(t&1), if f (w, 0) is smooth near w=0.

For :>0, the representation Q(w, t)=��
n=0 qn(t) $(w&:n) yields

coefficients qn by induction. Indeed, q* 0=&q0 , q* n=&:nqn+:n&1qn&1 ,
with initial data q0(0)=1, qn(0)=0 for n>0. The Laplace transforms
q̂n(s)=��

0 qn(t) e&st dt follow for R(s)>0:

q̂0(s)=(1+s)&1 (7)

q̂n(s)=
:n&1

s+:n q̂n&1=
1

s+1
`
n

k=1

:k&1

s+:k (8)

The accumulation of poles sn=&:n to the origin reflects the critical slow-
ing down of the process.

The Laplace transforms X� k(s) of moments Xk(t)=�n qn(t) :nk have
singular expansions for s � 0. In particular, (1+s) X� 1(s)=1+X� 1(s�:) for
s>0, which admits the solution X� 1(s)=A(s) ln s+B(s) with entire functions
A(s)=��

n=0 ansn, B(s)=��
n=0 bn sn near s=0: an=a0 >n

k=1 (:&k&1)&1,
bn=(bn&1 :n+an ln :)�(1&:n), a0=&.

3. RESCALED PROCESS

As the natural time scale for the evolution of W is 1�W, consider the
rescaled variables

{=ln(1+t�}) (9)

U({)=(t+}) W(t) (10)
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where the characteristic time } is adapted to the specific initial data f. The
moments yk of U and its probability density h are

yk(t)=(t+})k xk(t) (11)

h(u, {)=(t+}) f (w, t) (12)

and for 0<:<1 obey the equations

y$k=kyk&(1&:k) yk+1 (13)

yk(0)=xk(0) }k (14)

�{h=Lh(u, {)+:&2uh(:&1u, {) (15)

h(u, 0)=}&1f (u�}, 0) (16)

where Lh(u, {)=&u�uh(u, {)&(u+1) h(u, {) and the prime denotes
derivation with respect to {. It is easily seen that U is a stationary Markov
process, ergodic on the half line ]0, �[. It jumps down by a factor : with
rate u and drifts upwards along exponential characteristics (u$=u).

As U is ergodic, one finds a stationary density heq(u) and its moments
yeq

k :

yeq
k+1= yeq

1 `
k

l=1

l
(1&: l)

= yeq
1

k !
[k]!

(1&:)&k (17)

Moreover, as (13)�(14) hold for all k # R and y0=1 by normalisation, one
finds yeq

1 =&=&1� ln(:) in the limit k � 0. Induction for negative k shows
that the stationary solution of (13) has also finite moments for all
&�<k<+� (diverging for |k| � �).

A series for heq is found in the form

heq(u)= :
�

m=0

'mu&1e&u�:m
(18)

with coefficients 'm=&'m&1:&1(:&m&1)&1 (note that 'mt:m(m&1)�2 for
m � �). This series converges in the half plane R(u)>0, with an essential
singularity at u=0. At that point, all derivatives of heq vanish, in agree-
ment with the finiteness of its moments. Figure 1 displays this stationary
density and its moments.

While initial distributions h(u, 0) relax to the stationary density heq,
the distribution of the original variable W approaches(7) this profile, up to
the rescaling by (t+}). In particular, Fig. 2 displays the first two moments
of the Green function Q and the leading term (t+})&k yeq

k in its
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File: 822J 704005 . By:XX . Date:24:10:00 . Time:23:56 LOP8M. V8.B. Page 01:01
Codes: 570 Signs: 195 . Length: 44 pic 2 pts, 186 mm

Fig. 1. For :=0.8 (solid line), 0.7 (dots) and 0.6 (dash-dots): (a) invariant density heq vs u;
(b) moments yeq

k vs k (in semi-log scale).

401Asymptotic Behaviour for Critical Slowing-Down Random Walks
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Codes: 620 Signs: 236 . Length: 44 pic 2 pts, 186 mm

Fig. 2. Expectations Xk(t) for the kernel Q with :=0.8 and (a) k=1, (b) k=2. Solid line:
direct sum of series (5) with xk(0)=1 \k; thin lines: asymptotically leading approximation
(t+})&k yeq

k with }=1 (dots) and }=& (dash-dots).
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asymptotic expansion for t � �. Two choices for time scale } are com-
pared: }=1 may seem natural in view of initial data P(W(0)=1)=1, but
the choice }= yeq

1 �X1(0)=& has the advantage that the first moment
satisfies y1(0)= yeq

1 and, indeed, the relaxation of (t+}) Q(u�(t+}), t) to
heq is almost unnoticed on these lower moments with the choice }=&.

4. POPULATION DYNAMICS INTERPRETATION

One may also interpret our process as a birth (only) process for the
variable Z=ln(}W )� ln : (with the same characteristic time } as intro-
duced in (9) and (10)): Z increases by unit jumps, with a jump rate }&1:Z.
This description suggests that Z would describe e.g., a self-inhibiting single-
species population growth process, where all present individuals of the
species are cooperating to produce one more individual.

It is easily seen that, for the population corresponding to the
asymptotic distribution,

(Z(t))r& ln(1+t�})&&( ln U) eq (19)

where ( ln U) eq=limk � 0 dyeq
k �dk. The population grows to infinity,

logarithmically in time, as does the solution z=& ln(a+t�})&& ln & (with
integration constant a) to the rate equation z* =}&1:z corresponding to the
birth process.

5. CONCLUDING REMARKS

The long-time behaviour of moments xk in the case f (w, 0) does not
vanish on a neighbourhood of w=0 raises interesting questions, as the
density heq is flat at the origin. Relaxation of (t+}) f (u�(t+}), t) is likely
to be algebraic, and the competition between the scale factor (t+})&1 and
the relaxation of h may lead to non-universality in the asymptotics.

One may also consider that the absorption at the origin is a coarse
description of the relevant physical processes. In this respect, one may
balance the drift towards zero by various simple processes:

1. adding a diffusion term to (2), with reflecting boundary condition
(�w f (0, t)=0); (4)

2. imposing a constant acceleration (with W interpreted as a
velocity) between jumps, as in the one-dimensional inelastic Lorentz gas
model.(5)

Analytic investigations of these models reveal rich behaviours and varied
structures of equilibrium distributions.(4, 5)
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